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These notes are the continuation of the notes scribed by Moorea Brega. References:
[1], sections 3.1 and 4.2.

23.1 Stopping Times and Martingales: Examples

Example 23.1 (Unfair coin tossing game) Suppose that we have a biased coin,
with probability p of heads, ¢ = 1 — p of tails. Let us define i.i.d. random variables
X; by X; = 1 when the it coin toss is a head, and —1 when the i™" coin toss is a tail.
Suppose that So = a where a is a positive integer, and let S,, = So+ X1 + ...+ X,,.
Let T =inf{n : S,, =0 or b} for b > 0 an integer. We arque that P(T < c0) =1 and
we want to find P(Sy = b) and P(Sy = 0).

Proof: Note that S, is not a martingale and so the idea is to find a suitable h(x)
such that h(S,) is a martingale. If h(S,) is to be a martingale, we must have that
h(xz) = ph(z + 1) + gh(xz — 1) because given S, S,11 is S, + 1 with probability p and
S, — 1 with probability ¢. Consider h(x) = z* where 2z will be determined shortly.
From the above equation, we have 2% = pz®*! + ¢z*~! and in particular, z = pz? +q.
Alternatively, compute E[z5+1|F,] = 25"E[zX"+1|F,] = 2% [pz! + ¢z, If 25 is
a martingale, E[25|F,] = 2 and so z = pz? + q. The roots of the quadratic
equations are 1 (trivial) and (q/p). So we conclude that (q/p)°" is a martingale.

For 0 <n < T =inf{n: S, =0 or b}, we observe that (¢/p)°" is bounded between
(q/p)° and (q/p)°, so (q/p)®* T is a bounded martingale. Easily, P(T' < co) = 1 and as
n — 00, Spar — St, 80 (¢/p)* T — (¢/p)°" which implies that E[(¢/p)°"] = (¢/p)*,
where Sy = a. Therefore,

P(Sr = b)(q/p)’ + P(St = 0)(¢/p)° = (¢/p)".

We also have
P(ST = b) + ]P)(ST = 0) = 1.

Solving these two equations, we obtain

]P)(ST _ b) _ (Q/p)a_i
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and ,
P(Sy = 0) = (4/p) —b(q/p) '
(¢/p) -1
Note that the two equations are linearly dependent for p = ¢ but we have already
worked out the formula for this case in the previous lecture. [ ]

Example 23.2 (Wald’s second equation) Let X, Xy, ... be i.i.d. with EX,, =0
and EX? = 0 < oo. If T is a stopping time with ET < oo then show that ESZ =
oET.

Proof: Recall that F,, = o(Xy,...,X,). Let M, := S? — no?, where ¢ = E[X?].
Check that M, is a martingale:

E[Mn+l|fn] = E[Sr2L+l - (TL + 1)U2|Fn]
= E[Srzz +2X5115, + XT2L+1 —(n+ 1)0'2‘-7:”]
= S no?

M,,.

First consider the case of a bounded stopping time 7. We know 0 = E[M] = E[My] =
E[SZ — To?]. Therefore, E[S7] = E[T]o? if P(T < N) = 1 for some non-random
N < 0.

We now look at the general case when T' is unbounded. Consider 7' A n instead of

T. We have E[S2, ] = E[T A n]o? for every n = 1,2,3,.... Let n — oo. Since
T An T T as n increases, E[T An] T E[T] < oo (by assumption). Also we know
that S, is a martingale (because S,,n = 0,1,... is a martingale). However, since

a martingale in L? has orthogonal increments only diagonal terms add up and hence
E[SZ,,] is increasing in n. We now argue that E[S%, | increases to E[SZ]. Since
E[SZ,,] = E[T A nJo? < o?E[T] < oo, we conclude that Sr,, is bounded in L2
Therefore, by boundedness and orthogonality property, Sra, € L? converges to some
limit in L?. However, we know that Sz,, — St a.s. Therefore E[S7] = E[T]|o?. =
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