
Lecture 23 : Stopping Times and Martingales: Examples

STAT205 Lecturer: Jim Pitman Scribe: Saurabh Amin <amins@berkeley.edu>

These notes are the continuation of the notes scribed by Moorea Brega. References:
[1], sections 3.1 and 4.2.

23.1 Stopping Times and Martingales: Examples

Example 23.1 (Unfair coin tossing game) Suppose that we have a biased coin,

with probability p of heads, q = 1 − p of tails. Let us define i.i.d. random variables

Xi by Xi = 1 when the ith coin toss is a head, and −1 when the ith coin toss is a tail.

Suppose that S0 = a where a is a positive integer, and let Sn = S0 + X1 + . . . + Xn.

Let T = inf{n : Sn = 0 or b} for b > 0 an integer. We argue that P(T < ∞) = 1 and

we want to find P(ST = b) and P(ST = 0).

Proof: Note that Sn is not a martingale and so the idea is to find a suitable h(x)
such that h(Sn) is a martingale. If h(Sn) is to be a martingale, we must have that
h(x) = ph(x + 1) + qh(x− 1) because given Sn, Sn+1 is Sn + 1 with probability p and
Sn − 1 with probability q. Consider h(x) = zx where z will be determined shortly.
From the above equation, we have zx = pzx+1 + qzx−1 and in particular, z = pz2 + q.
Alternatively, compute E[zSn+1 |Fn] = zSnE[zXn+1 |Fn] = zSn [pz1 + qz−1]. If zSn is
a martingale, E[zSn+1 |Fn] = zSn and so z = pz2 + q. The roots of the quadratic
equations are 1 (trivial) and (q/p). So we conclude that (q/p)Sn is a martingale.

For 0 ≤ n ≤ T = inf{n : Sn = 0 or b}, we observe that (q/p)Sn is bounded between
(q/p)0 and (q/p)b, so (q/p)Sn∧T is a bounded martingale. Easily, P(T < ∞) = 1 and as
n → ∞, Sn∧T → ST , so (q/p)Sn∧T → (q/p)ST which implies that E[(q/p)ST ] = (q/p)a,
where S0 = a. Therefore,

P(ST = b)(q/p)b + P(ST = 0)(q/p)0 = (q/p)a.

We also have
P(ST = b) + P(ST = 0) = 1.

Solving these two equations, we obtain

P(ST = b) =
(q/p)a − 1

(q/p)b − 1

23-1



Lecture 23: Stopping Times and Martingales: Examples 23-2

and

P(ST = 0) =
(q/p)b − (q/p)a

(q/p)b − 1
.

Note that the two equations are linearly dependent for p = q but we have already
worked out the formula for this case in the previous lecture.

Example 23.2 (Wald’s second equation) Let X1, X2, . . . be i.i.d. with EXn = 0
and EX2

n
= σ < ∞. If T is a stopping time with ET < ∞ then show that ES2

T
=

σ2
ET .

Proof: Recall that Fn = σ(X1, . . . , Xn). Let Mn := S2
n − nσ2, where σ2 = E[X2].

Check that Mn is a martingale:

E[Mn+1|Fn] = E[S2

n+1 − (n + 1)σ2|Fn]

= E[S2

n
+ 2Xn+1Sn + X2

n+1 − (n + 1)σ2|Fn]

= S2

n − nσ2

= Mn.

First consider the case of a bounded stopping time T . We know 0 = E[M0] = E[MT ] =
E[S2

T
− Tσ2]. Therefore, E[S2

T
] = E[T ]σ2 if P(T ≤ N) = 1 for some non-random

N < ∞.

We now look at the general case when T is unbounded. Consider T ∧ n instead of
T . We have E[S2

T∧n
] = E[T ∧ n]σ2 for every n = 1, 2, 3, . . .. Let n → ∞. Since

T ∧ n ↑ T as n increases, E[T ∧ n] ↑ E[T ] < ∞ (by assumption). Also we know
that ST∧n is a martingale (because Sn, n = 0, 1, . . . is a martingale). However, since
a martingale in L2 has orthogonal increments only diagonal terms add up and hence
E[S2

T∧n
] is increasing in n. We now argue that E[S2

T∧n
] increases to E[S2

T
]. Since

E[S2
T∧n

] = E[T ∧ n]σ2 < σ2
E[T ] < ∞, we conclude that ST∧n is bounded in L2.

Therefore, by boundedness and orthogonality property, ST∧n ∈ L2 converges to some
limit in L2. However, we know that ST∧n → ST a.s. Therefore E[S2

T
] = E[T ]σ2.
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